Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water

نویسنده

  • A. G. Carlton
چکیده

Gas-phase water-soluble organic matter (WSOMg) is ubiquitous in the troposphere. In the summertime, the potential for these gases to partition to particle-phase liquid water (H2Optcl) where they can form secondary organic aerosol (SOAAQ) is high in the Eastern US and low elsewhere, with the exception of an area near Los Angeles, CA. This spatial pattern is driven by mass concentrations of H2Optcl, not WSOMg. H2Optcl mass concentrations are predicted to be high in the Eastern US, largely due to sulfate. The ability of sulfate to increase H2Optcl is well established and routinely included in atmospheric models; however WSOMg partitioning to this water and subsequent SOA formation is not. The high mass concentrations of H2Optcl in the southeast (SE) US but not the Amazon may help explain why biogenic SOA mass concentrations are high in the SE US but low in the Amazon. Furthermore, during the summertime in the Eastern US, the potential for organic gases to partition into liquid water is greater than their potential to partition into organic matter (OM) because concentrations of WSOMg and H2Optcl are higher than semi-volatile gases and OM. Thus, unless condensed phase yields are substantially different (>∼ order of magnitude), we expect that SOA formed through aqueous-phase pathways (SOAAQ) will dominate in the Eastern US. These findings also suggest that H2Optcl is largely anthropogenic and provide a previously unrecognized mechanism by which anthropogenic pollutants impact the amount of SOA mass formed from biogenic organic emissions. The previously reported estimate of the controllable fraction of biogenic SOA in the Eastern US (50 %) is likely too low.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physico-chemical and bacteriological characterization of surface water in Djendjen River (North Eastern Algeria)

Djendjen River is one of the largest rivers in the region of Jijel (Algeria). Human activities such as urban discharges, industrial, agricultural, and livestock have significant effects on the quality of water. The present study attempts to evaluate the quality of water along the banks of the Djendjen River at different sampling sites, using physico-chemical and bacteriological methods. The col...

متن کامل

Physico-chemical and bacteriological characterization of surface water in Djendjen River (North Eastern Algeria)

Djendjen River is one of the largest rivers in the region of Jijel (Algeria). Human activities such as urban discharges, industrial, agricultural, and livestock have significant effects on the quality of water. The present study attempts to evaluate the quality of water along the banks of the Djendjen River at different sampling sites, using physico-chemical and bacteriological methods. The col...

متن کامل

Investigation on anthropogenic and natural share of heavy metals in surface sediments of Shadegan wetland

Accumulation of trace metals in sediment can cause severe ecological impacts. The present study determines the elemental concentrations and chemical partitioning of heavy metals in surface sediment of Shadegan wetland. Shadegan wetland is one of the most important wetlands in southwest of Iran and it is in Ramsar-listed wetlands. For this purpose, 7 sampling stations were selected for sediment ...

متن کامل

Aerosol liquid water driven by anthropogenic nitrate: implications for lifetimes of water-soluble organic gases and potential for secondary organic aerosol formation.

Aerosol liquid water (ALW) influences aerosol radiative properties and the partitioning of gas-phase water-soluble organic compounds (WSOCg) to the condensed phase. A recent modeling study drew attention to the anthropogenic nature of ALW in the southeastern United States, where predicted ALW is driven by regional sulfate. Herein, we demonstrate that ALW in the Po Valley, Italy, is also anthrop...

متن کامل

Equilibration timescale of atmospheric secondary organic aerosol partitioning

[1] Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, teq, of SOA ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013